Self consistent tight binding model for dissociable water.

نویسندگان

  • You Lin
  • Aaron Wynveen
  • J W Halley
  • L A Curtiss
  • P C Redfern
چکیده

We report results of development of a self consistent tight binding model for water. The model explicitly describes the electrons of the liquid self consistently, allows dissociation of the water and permits fast direct dynamics molecular dynamics calculations of the fluid properties. It is parameterized by fitting to first principles calculations on water monomers, dimers, and trimers. We report calculated radial distribution functions of the bulk liquid, a phase diagram and structure of solvated protons within the model as well as ac conductivity of a system of 96 water molecules of which one is dissociated. Structural properties and the phase diagram are in good agreement with experiment and first principles calculations. The estimated DC conductivity of a computational sample containing a dissociated water molecule was an order of magnitude larger than that reported from experiment though the calculated ratio of proton to hydroxyl contributions to the conductivity is very close to the experimental value. The conductivity results suggest a Grotthuss-like mechanism for the proton component of the conductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-consistent tight binding molecular dynamics study of TiO2 nanoclusters in water

Self-consistent tight binding molecular dynamics studies of TiO2 anatase and rutile nanoclusters in dissociable water are reported. It is found that the structure of the particle expands as a result of interaction between the particle’s surface and water. Water molecules dissociate at the nanoparticle surface during simulation. ! 2007 Elsevier B.V. All rights reserved.

متن کامل

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

Berry curvature and energy bands of graphene

In this paper energy bands and Berry curvature of graphene was studied. Desired Hamiltonian regarding the next-nearest neighbors obtained by tight binding model. By using the second quantization approach, the transformation matrix is calculated and the Hamiltonian of system is diagonalized. With this Hamiltonian, the band structure and wave function can be calculated. By using calculated wave f...

متن کامل

Berry curvature and energy bands of graphene

In this paper energy bands and Berry curvature of graphene was studied. Desired Hamiltonian regarding the next-nearest neighbors obtained by tight binding model. By using the second quantization approach, the transformation matrix is calculated and the Hamiltonian of system is diagonalized. With this Hamiltonian, the band structure and wave function can be calculated. By using calculated wave f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 17  شماره 

صفحات  -

تاریخ انتشار 2012